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Turbulence and passive scalar transport in a free-slip surface
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We consider the two-dimensional~2D! flow in a flat free-slip surface that bounds a three-dimensional~3D!
volume in which the flow is turbulent. The equations of motion for the two-dimensional flow in the surface are
neither compressible nor incompressible but strongly influenced by the 3D flow underneath the surface. The
velocity correlation functions in the 2D surface and in the 3D volume scale with the same exponents. In the
viscous subrange the amplitudes are the same, but in the inertial subrange the 2D one is reduced to 2/3 of the
3D amplitude. The surface flow is more strongly intermittent than the 3D volume flow. Geometric scaling
theory is used to derive a relation between the scaling of the velocity field and the density fluctuations of a
passive scalar advected on the surface.
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I. INTRODUCTION

We consider flows in a flat two-dimensional~2D! surface
that bounds a three-dimensional~3D! volume with turbulent
fluid motion. The boundary condition is that of a free-s
surface so that the normal velocity component vanishes
the parallel components are not further constrained. To s
extent, this is the situation of surface currents on a river
the sea, if waves and ripples are absent or can be negle
Particles floating on the surface reflect the properties of
flow and provide an easy visualization. These flows have
obvious connection to oceanographic applications@1,2#, but
they apparently have not been studied in further detail. E
in the recent theoretical and experimental investigations
the statistical properties of the particle distribution by O
and co-workers@3–6# the modeling was based on rando
dissipative maps and not on the underlying flow. Similar
Saichev and co-workers@7,8# based their investigation o
passive particle advection and cluster formation on Gaus
random velocity fields, white in time. Thus, one of our aim
here is to analyze the properties of surface flows arising fr
Navier-Stokes dynamics and to connect them to the statis
of particles floating on the surface, along the lines of o
previous work on passive scalars advected in tw
dimensional turbulent flows@9#.

The flow in the surface is two dimensional, but it h
properties that are different from those of the usual tw
dimensional incompressible Navier-Stokes turbulence. O
ously, the velocity field is not constrained by mass cons
vation in the surface: there can be up- and downwell
motions in the~incompressible! bulk which on the surface
will appear as sources and sinks for the velocity field. V
locity and vorticity can be exchanged with the bulk flo
underneath, so that in the inviscid limit without forcing ne
ther kinetic energy nor enstrophy are conserved. Such eff
of compressibility arise also in experiments in tw
dimensional turbulence in soap films and were discussed
cently @10–12#.

*Present address: P.O. Box 208284, Yale University, New Hav
CT 06520-8284.
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The experiments of Goldburget al. @13# are close to a
laboratory realization of the kinds of flow that are inves
gated here. A vertically oscillating grid in a tank of water
used to produce turbulence. If the water surface is su
ciently far away from the grid it remains essentially flat a
the surface flow can be visualized with mushrooom spo
The measured statistical properties of the flow are close
the ones that we will derive here. This opens the way
further experimental studies of the statistical properties
the velocity field and of the particle dynamics in this inte
esting flow.

Finally, we should like to point out that the flows are al
of interest from a theoretical point of view, since they can
thought of as flows with a symmetry plane. Let the surfa
be z50 and consider the reflection symmetry that asz→
2z the z component of the velocity field changes sign. Th
is a symmetry of the Navier-Stokes equation, that is to say
initial conditions and driving preserve this symmetry so do
the time evolved flow.

It is our aim here to derive the equations of motion f
such a flow~Sec. II A!, to discuss the correlation function
the 3D flow is turbulent~Sec. II B!, to present numerica
results on the statistics of the velocity, vorticity, and dive
gence fields and on the boundary layer thickness~Sec. III!,
and to derive a relation between the fractal dimension
the velocity correlation function for the advection of scala
within geometric scaling theory~Sec. IV!. Concluding re-
marks are given in Sec. V.

II. THE TWO-DIMENSIONAL FLOW IN A FREE-SLIP
SURFACE

In order to arrive at the properties of such a flow, tw
approaches are possible: one relies on an explicit represe
tion of the flow field with proper boundary conditions an
the other seeks to derive the equations of motion from the
Navier-Stokes equation. They provide complementary inf
mation on the system.

A. Flow with reflectional symmetry

We begin with the equations of motion and the effects
symmetry. Letu, v, andw be thex, y, andz components of

n,
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BRUNO ECKHARDT AND JÖRG SCHUMACHER PHYSICAL REVIEW E64 016314
the velocity field~Fig. 1! and letp be the pressure field. Th
surface flow can be realized as flow in a symmetry pla
e.g., the planez50 if the velocity field is invariant under the
symmetry (u,v,w)→(u,v,2w) whenz→2z. This suggests
expanding the velocity components in power series inz, with
only odd powers forw, and only even ones foru, v, andp,

u~x,y,z,t !5 (
n50

`

u2n~x,y,t !z2n, ~1!

v~x,y,z,t !5 (
n50

`

v2n~x,y,t !z2n, ~2!

w~x,y,z,t !5 (
n50

`

w2n11~x,y,t !z2n11, ~3!

and

p~x,y,z,t !5 (
n50

`

p2n~x,y,t !z2n. ~4!

Substitution into the Navier-Stokes equation and order
with respect to powers ofz gives for the two main compo
nents of interest,u0(x,y,t) andv0(x,y,t), the equations

] tu01~ û0•“̂ !u052]xp01nD̂u012nu21 f u , ~5!

] tv01~ û0•“̂ !v052]yp01nD̂v012nv21 f v . ~6!

The carets on position vectorsx andR, on the velocity field
u, on the gradient“, and on the Laplace operatorD indicate
that they are restricted to the componentsx andy that lie in
the surface. The driving of the turbulence is modeled b
volume force with componentsf u , f v , and f w ; as usual we
expect that the statistical properties of the flow will depe
only weakly~through intermittency! on the kind of driving as
long as it is confined to large scales.n is the kinematic vis-
cosity of the fluid.

For the full 3D velocity field mass conservation“•u50
connects the normal and tangential components, viz.,]zw5
2]xu2]yv or, on the levels of the components@cf. Eqs.
~1!–~3!#,

FIG. 1. Flow geometry. The surface flow exists in the shad
surface above a turbulent bulk flow.x andy are the coordinates in
the surface andz is the one normal to it. In the numerical simulatio
the flow is driven by a shear flow in thex direction with variations
in z.
01631
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w2n1152~]xu2n1]yv2n!/~2n11!. ~7!

Similarly, the pressure has to be determined from the
relationDp52“•@(u•“)u#. With the power series expan
sion from above this becomes to leading order inz

D̂p0~x,y!12p2~x,y!52@~]xu0!~]yv0!2~]yu0!~]xv0!#

22~]xu01]yv0!2. ~8!

Equations~5!, ~6!, and~8! are the equations of motion for th
surface flow. Note that besides the surface velocity fi
(u0 ,v0) and the surface pressurep0 there are additional con
tributions from higher order terms in the power series inz:
the viscous driving termsnu2 andnv2 from shear effects in
the normal direction and a contribution (D̂)21p2 to the pres-
sure, also resulting from pressure variations in the wall n
mal direction. From the point of view of the flow in th
surface, these terms are externally given and can henc
included in the volume driving forces. Note, however, th
now the driving is no longer confined to large scales,
assumed in the usual scaling analysis. With all unspeci
terms absorbed into effective volume forcesf̃ u and f̃ v , the
equations of motion foru0 andv0 become finally

] tu01~ û0•“̂ !u052]xp01nD̂u01 f̃ u , ~9!

] tv01~ û0•“̂ !v052]yp01nD̂v01 f̃ v , ~10!

The equations are completed by Eq.~8! with p250 for the
pressure.

These equations have unusual properties. For insta
dotting with û and integrating over a 2D volume, the ener
is not conserved in the Eulerian limit where viscosity a
driving are absent. With the local energy density

E~x,y,t !5~u0
21v0

2!/2, ~11!

and using Eq.~7! for n50 the global energy balance read

] t^E~x,y,t !&S52^w1~x,y,t !@E~x,y,t !1p0~x,y,t !#&S ,
~12!

where ^•&S denotes the average over the surfaceS. Thus
energy is permanently put in and taken out according to
gradients of thez component ofu and the pressure fluctua
tions. Over large time intervals one can expect that a fl
equilibrium with constant average energy is established
that the time average of the right hand side of Eq.~12! van-
ishes. It seems that the lack of energy conservation for s
times gives rise to larger fluctuations and larger interm
tency corrections~see below and@13#!. A similar discussion
applies to the vorticity, and will be given in Sec. III B below

B. Direct representation of a stress-free surface

The alternative approach mentioned above starts from
explicit representation of the 3D velocity field that takes t
boundary conditions into account. Consider the Fourier
pansion of the velocity field,

d
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TURBULENCE AND PASSIVE SCALAR TRANSPORT IN . . . PHYSICAL REVIEW E64 016314
u~x,y,z,t !5(
K̂ ,n

uK̂ ,n~ t !exp~ i K̂• x̂!cos~npz!, ~13!

v~x,y,z,t !5(
K̂ ,n

v K̂ ,n~ t !exp~ i K̂• x̂!cos~npz!, ~14!

w~x,y,z,t !5(
K̂ ,n

wK̂ ,n~ t !exp~ i K̂• x̂!sin~npz!, ~15!

where the summation extends over all 2D wave vectorsK̂
5(Kx ,Ky) in the surface and all integersn. The sine and
cosine terms take into account the stress-free boundary
ditions at the top and bottom surfaces,

]zu5]zv5w50 for z50 and z51. ~16!

Incompressibility requires that

iK xuK̂ ,n1 iK yv K̂ ,n1npwK̂ ,n50. ~17!

One advantage of this representation is that it quickly le
to a prediction for the two-point correlation functions. In th
3D case Kolmogorov scaling without intermittency gives f
the inertial regime a decay of amplitudesuuK̂ ,nu2}uK̂2

1(np)2u211/3 @14#. In the surface, the 2D amplitudes a
obtained by summation onn. This brings in a factor ofK that
compensates the one missing from the volume elem
which is K dK in 2D rather thank2 dk as in 3D. As a net
result scaling of the correlation function does not chan
However, the absence of the third component of the velo
field reduces the amplitude to two-thirds of its thre
dimensional value. For the second order structure funct
defined as

S2~R!5^uu~x1R!2u~x!u2&, ~18!

we expect in the inertial regime

Ŝ2~R!5
2

3
S2~R!;R2/3, ~19!

where again the caret distinguishes the 2D surface from
3D bulk structure function.

III. NUMERICAL SIMULATIONS

The numerical simulations are based on a nearly homo
neous turbulent shear flow bounded by stress-free surfac
z50 and z51 as given in Eq.~16!. The velocity field is
decomposed as in Eqs.~13!–~15! and the Navier-Stokes
equations are integrated using a pseudospectral me
@15,16#. The simulations were done for Taylor Reynol
numbers Rel559, 79, and 99, calculated from the strea
wise velocity componentu, i.e., Rel5urms

2 /@^(]xu)2&1/2n#
with root mean square velocityurms5^u2&1/2. The properties
of the 3D bulk flow are included here only to the extent th
they are needed for the comparison between bulk and
face; they are further analyzed in@16#.

Kolmogorov lengthh5(n3/e)1/4, velocity vh5(en)1/4,
01631
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and time scalesth5(n/e)1/2 are calculated from the 3D en
ergy dissipation rate in the surface, i.e.,

e5n (
i , j 51

2

^~] iuj !
2&S1n^~]3u3!2&S , ~20!

where indices 1, 2, and 3 correspond tox, y, andz, respec-
tively. For Rel599 this dissipation rate in the surface
about 40% of the value in the bulk.

A. Structure functions of the velocity field

Form factors in the middle of the cell and on the surfa
are determined from 114 statistically independent snaps
of the turbulent flow. We focus on the scaling of thenth
order longitudinal structure functions, defined as

Ŝn
L~R̂,z0!5^u@ û~ x̂1R̂,z0!2û~ x̂,z0!#•R̂/R̂un&. ~21!

In the bulk and without intermittency corrections the seco
order structure function is expected to scale likeR2 in the
viscous subrange and likeR2/3 in the inertial subrange@14#.
A comparison between bulk and surface structure functi
is shown in Fig. 2 for Rel599. The two structure functions
coincide in the viscous subrange but differ in the inert
subrange. This difference is predominantly in the amplitu
and not in the scaling exponents, and is consistent with
~19!. A local scaling exponent can be defined asz(R̂)
5d ln Ŝn

L(R̂,z0)/d ln R̂. Unfortunately, the two structure func

FIG. 2. Second order structure functionsŜ2
L(R̂,z0)/vh

2 for Rel

599 normalized withvh5(en)1/4 ande from Eq. ~20!. Data from
the surfaces atz050 and z051 are indicated by diamonds an
connected by continuous lines. Data in the bulk were taken az0

51/2 and are indicated by triangles and dashed lines. The i
shows the local scaling exponents from an extended self-simila
~ESS! analysis. Estimates between the vertical dashed lines, w
the exponents are reasonably constant, give mean scaling expo
of 0.69 in the bulk and 0.71 in the surface. These values are i
cated by horizontal dashed lines.
4-3
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BRUNO ECKHARDT AND JÖRG SCHUMACHER PHYSICAL REVIEW E64 016314
tions do not show an algebraic scaling behavior at interm
diate scales between the viscous and the forcing scale r
for the values of Rel achieved here. Therefore, we apply t
extended self-similarity~ESS! analysis@17# to the data. A
local ESS scaling exponent can be calculated by rela
local scaling exponents of second and third order struc
functions,

D2,3~R̂,z0!5
d ln@Ŝ2

L~R̂,z0!#

d ln@Ŝ3
L~R̂,z0!#

. ~22!

The distance vectorR̂ is taken in planes of fixedz0. As
shown in the inset in Fig. 2 the bulk data give a local scal
exponent of about 0.69, in agreement with other obse
tions, but in the surface the local slope is larger, about 0
This difference is small but statistically significant. Loc
exponents, based on averages over planes parallel to the
face, show almost no variation in the center of the cell bu
clear trend when approaching the surface. This is dem
strated in Fig. 3 for the deviationsdDn,3(R,z0)

FIG. 3. Deviations of the local ESS scaling exponent from
classical Kolmogorov scaling for different heightsz0 of the averag-
ing plane and for different ordersn52 to n56. Part~a! for Rel

599, averaged over 228 samples. The deviationsDn,3(R,z0) are the
mean obtained for scalesR between 18h and 41h, as indicated by
vertical lines in the inset of Fig. 2. Part~b! for Rel579, averaged
over 254 samples. Here the exponents are obtained for scalR
between 10h and 27h. The vertical lines indicate the surface lay
that is analyzed further in Sec. III D.
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5Dn,3(R,z0)2n/3 from classical Kolmogorov scaling@14#
for ordersn52 to n56 for differentz0. The planez051/2
defines the middle between both free surfaces. Data set
two different Taylor-Reynolds numbers Rel599 ~a! and 79
~b! are shown. The transition from bulk to surface behav
can be used to define a surface layer, as discussed furth
Sec. III D.

The increase in intermittency seems to be connected w
an increase in fluctuations due to lack of incompressibi
and lack of energy conservation. It is in line with results f
passive scalar transport in models with compressible Ga
ian random flows that ared correlated in time@18,19# and
with direct numerical simulations@20,21# of isotropic super-
sonic turbulence. Interestingly, in the latter case the auth
also noted a strong difference from incompressible tur
lence near the crossover to the viscous subrange. In t
case vortex filaments of high intensity and narrow regions
strong negative divergence, due to small scale supers
shocks, appeared. In our situation it is the fluctuations du
normal shear and normal velocity components below the
face that have a strong effect near the crossover to the
cous subrange.

In the viscous subrange the amplitudes of the struct
functions agree, but in the inertial subrange the surface st
ture function is smaller by a factor of 2/3. In the previo
section we explained the reduction in amplitude in the in
tial range by the reduction in the number of active degree
freedom or Fourier modes. In the viscous subrange this
gument does not apply, since we absorbed many additio
contributions to the equations of motion into the volum
driving force. The amplitude is larger since these extra c
tributions also have to be dissipated, but it should not exc
that of a 3D structure function since they originally com
from a 3D flow. So in the viscous subrange the reduction
dimensionality is not noticeable and the structure functio
coincide.

B. Structure function of the vorticity field

Another quantity of interest in 2D flows is the vorticit
v5]xv2]yu and its structure function

V̂~R̂!5^uv~ x̂1R̂!2v~ x̂!u2&. ~23!

In 2D incompressible turbulence squared vorticity is an
ditional inviscid invariant and gives rise to an inverse ca
cade of energy. In 3D a vortex stretching term (v•“)u is
present that prevents a conservation of enstrophy. In 2D
for the normal component of the vorticity this reduces to
normal gradient of the velocity field which by incompres
ibility is connected to the divergence of the flow field in th
surface. Thus, for the 2D free surface flow the vorticity tran
port equation reads

] tv1~ û•“̂ !v52v~“̂•û!1nD̂v1 f̃ v , ~24!

and the nonvanishing divergence of the surface flow p
vides a kind of additional vorticity forcing in 2D. Conse
quently, squared vorticity cannot be an inviscid invaria
and no inverse cascade develops.

e
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TURBULENCE AND PASSIVE SCALAR TRANSPORT IN . . . PHYSICAL REVIEW E64 016314
The vorticity structure function for the data underlyin
Fig. 2 is shown in Fig. 4. It saturates for larger separation
a nonvanishing value. Nonvanishing vorticity fluctuatio
were also observed in experiment@13# and interpreted as a
indication that the observed features are not connected
turbulent surface waves@22#. Note that in incompressible
stationary turbulence the second order velocity and the
ond order vorticity structure function are connected by
exact relationV(R)52e/n2DS2(R) @23,24#. This holds
true in two and three dimensions, but has additional term
the flows are not incompressible.

The strong intermittency of the flow is also reflected
the probability density function. Figure 5 shows that t
probability density function of the vorticity deviates from
Gaussian distribution and has the exponentially stretc
tails that are typical for intermittent quantities.

C. Divergence of the surface flow

The property that distinguishes surface flows from inco
pressible 2D flows most clearly is the divergence of the flo
which does not vanish for the surface flow. Snapshots of
flow field, such as in Fig. 6, clearly show the presence
sources and sinks. A vertical slice across the flow undern
the surface allows one to connect them to up- and do
welling motions below the surface. The corresponding c
tour plot of the divergence of the surface flow~Fig. 7! shows
randomly fluctuating patches of sources and sinks. In

mean the flow is divergence free,^(“̂•û)&50, but the root
mean square value does not vanish. Formally one can de
a compressibility factor@18#

0<C5
^~“•u!2&

^u“uu2&
<1, ~25!

which relates the mean square divergence to the mean sq

FIG. 4. Vorticity structure functionV(R)/th
22 for the surface

flow at Rel599. The data base is the same as for Fig. 2.
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velocity gradient. For the surface flow and using only t
velocity components in the surface, this becomes

C5
^~“̂•û!2&

^u“̂ûu2&
. ~26!

In our simulations for Rel599 we find C'1/2, in good
agreement with the experiments of Goldburget al. @13#. The
relation of the denominator in Eq.~26! to the energy dissi-
pation rate~20! is given by

e5n@^u“̂ûu2&S1^~“̂•û!2&S#5n^u“̂ûu2&S~11C!. ~27!

The mean extension of regions with similar divergen
can be determined from the correlation function

Cdiv~R̂!5^@“̂•û~ x̂!#@“̂•û~ x̂1R̂!#&. ~28!

This correlation function is shown in Fig. 8. The first zero
Cdiv(R̂) defines a decorrelation length scaleLdiv ; in units of
the Kolmogorov scaleLdiv'25. This scale fits rather wel
with the size of the largest patches in Fig. 7. As a con
quence, the term in Eq.~24! that contains the divergence o
the velocity field describes a driving force that can be e
pected to be confined to the smaller scales in the flow.

D. Fluctuations of the vertical velocity component

In Sec. III A we already mentioned the variations of th
statistical properties with distance from the surface. Th
allow us to identify a surface layer in which the transitio
from bulk to surface behavior takes place. This layer is d
ferent from the ones near rigid walls and is not connected

FIG. 5. Probability density function~PDF! of the surface vortic-
ity component for the flow field of Fig. 2. For comparison a Gau
ian PDF fitted to the central part of the distribution is indicated
well ~dashed line!.
4-5
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BRUNO ECKHARDT AND JÖRG SCHUMACHER PHYSICAL REVIEW E64 016314
friction but rather to the suppression of velocity fluctuatio
in the wall-normal direction. Dimensional arguments allo
us to determine the layer thicknessd from a balance betwee
the turbulent transport of wall-normal fluctuations into t
boundary,

u~u•“ !uu'wrms
2 /d, ~29!

and the viscous dissipation of such fluctuations,

nuDuu'nwrms /d2. ~30!

FIG. 6. A turbulent velocity field in the free-slip surface flow fo
Rel599. The upper panel shows a vector plot of the componenu
andv in the surface atz/d50. The lower panel shows a vertical cu
through the box at the horizontal line (y/d5p) marked in the upper
panel. Regions of rising fluid and sinking fluid in the lower pan
can be connected to sources and sinks near the solid line in
upper panel.

FIG. 7. Divergence“̂•û of the surface flow in units of the
Kolmogorov timeth . Data are the same as for Fig. 6.
01631
In both cases the size of the velocity field is estimated by
root mean square average of the wall-normal velocity fl
tuations,wrms . Equating the two expressions gives

d'n/wrms ~31!

as an estimate of the thickness. This is compared with
merical data in Fig. 9 where thez profiles of the wall-normal
fluctuationswrms for two values of Taylor Reynolds numbe
are shown. The boundary layer becomes smaller with
creasing Rel , as expected. The absolute values for the thi
ness of the boundary layer can be read off from the data
linear extrapolations of the profile slopes at the surfaces.
intersections of these straight lines with the correspond
maximum values ofwrms were used to define the bounda

l
he

FIG. 8. Radially averaged correlation function of the divergen
field for Rel599. The decorrelation lengthLdiv is indicated by the
vertical dotted line.

FIG. 9. Fluctuations of the normal velocity component as
function of the position between the surfaces. The fluctuations
normalized in units of the square root of the mean turbulent kin
energyq25^u2&V1^v2&V1^w2&V . A linear extrapolation from the
surface up to the value in the middle gives a boundary layer th
nessd50.2 for Rel559 andd50.1 for Rel599. This is about a
factor of 10 larger than the values estimated from Eq.~31!.
4-6
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TURBULENCE AND PASSIVE SCALAR TRANSPORT IN . . . PHYSICAL REVIEW E64 016314
layer thickness~see Fig. 9!. This gives values ford that are
about a factor of 10 larger than the dimensional estimate,
consistent with its scaling behavior. This estimate for
thickness of a surface layer agrees with the interval o
which the scaling exponents in~Fig. 3! change from bulk to
surface values.

IV. PASSIVE SCALAR TRANSPORT IN THE FREE-SLIP
SURFACE

A. Time scales

Experimental and numerical studies show that the p
ticles floating on the surface of a fluid cluster in regions w
downwelling and avoid regions with upwelling motion@5,6#.
The patterns that appear have huge density variations tha
best described by fractal scaling exponents. As an appr
mation to the dynamics of particles we can study the adv
tion of a scalar density on the surface: it differs from tr
particles in that it has no inertia~the importance of which can
be reduced in experiments by sufficiently small and lig
particles; see, however,@25,26#! and that it can develop
larger gradients.

Allowing for the compressibility of the flow field, the
equations for the scalar density are thus

] tf1“̂•~ ûf!5DD̂f1 f f , ~32!

whereD is the passive scalar diffusivity. The Prandtl numb
is Pr5n/D. The following discussion will be confined to th
two-dimensional flow, so that all gradient, divergence, a
Laplace operators act on the two coordinatesx and y only;
the carets will henceforth be omitted. Expanding the sec
term in the above expression then gives the evolution eq
tion for the scalar,

] tf52~u•“ !f2~“•u!f1DDf1 f f . ~33!

The inputf f in scalar density is needed in order to compe
sate the diffusive losses. Since the equation for the scal
linear, the natural amplitude scale forf is set by its root
mean square valuef rms5^f2&1/2. After dividing byf rms all
terms have dimensions of inverse time and the time sc
involved can be used to characterize the different proces
Several of these processes also depend on the length sl
over which they are studied and so we introduce length s
resolved characteristic times. All terms can be made dim
sionless using the inner scales of the turbulent velocity fi
in the surface, as discussed above Eq.~20!. Different esti-
mates ofe bring in factors of order 1@see, e.g., relation~27!
and the remarks below Eq.~20!#. Again, we use the energ
dissipation rate that is given by Eq.~20! to composeh, vh ,
andth .

The advection term (u•“)f in Eq. ~33! is characterized
by the advective time scale

tadv~ l !5 l /u~ l !5
h

vh
S l

h D 2/3

5thS l

h D 2/3

~34!
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where the scale resolved velocityu( l )'vh( l /h)1/3 in Kol-
mogorov theory. The next term in Eq.~33! contains the di-
vergence of the 2D surface flow and acts like a source or s
for the scalar. Its time scale is denotedtdiv( l ). The com-
pressibility factor relates the divergence of the flow field
the root mean square velocity gradient@see Eq.~25!# which
is connected with the energy dissipation ratee and thus the
Kolmogorov time th . Numerical simulations and exper
ment @13# indicate tdiv( l )'th /C 1/2, where C is the com-
pressibility factor~26! with a value of about 1/2. The effi
ciency of diffusion clearly depends onl, so that the time
scaletdi f f( l ) for diffusive smearing istdi f f( l )' l 2/D. Fi-
nally, we have the forcing timet f5f rms / f f , which again is
independent of spatial resolution.

In any given range of length scales, the process with
shortest time scale can be expected to dominate. So sta
from the smallest scales we expect for an incompress
fluid first a diffusion dominated regime, then an advecti
dominated one, and finally the input dominated regime.
Batchelor regime for the scalar is found if the diffusive r
gime extends beyond the Komogorov length, i.e., Pr@1. In
an incompressible flow,C50 and tdiv is infinite, so that
there is no influence from the divergence. In the surfa
flows studied here, the estimate forC indicates thattdiv is
very short, of the order of the Kolmogorov time. This im
plies that the advective regime is suppressed and that
statistics of the divergence dominates. This, finally, expla
why the properties of the hydrodynamic flow do not seem
matter too much in the analysis of the particle distribution
free surfaces and why Ottet al. could explain the experi-
ments using random maps@3–6#.

B. Application of geometric scaling theory

In order to connect the scaling of the velocity field to t
scaling properties of the scalar, we use geometric mea
theory @27# and the scaling ideas developed by Constan
and co-workers@28–30#. A further extension of their work
allowed for a scale resolved and Prandtl number depen
analysis@31,9#. The basic idea of the approach is to relate t
fractal dimensiondg

(2) of the passive scalar concentratio
i.e., the scaling exponent~with respect toR) of the Haus-
dorff volume H of the passive scalar graphG(BR

(2))
5$(x,f)uxPBR

(2) , f5f(x)% taken over a two-dimensiona
ball BR

(2) of radiusR, to scaling properties of the underlyin
turbulent flow that mixes the scalar. The following discu
sion will focus on the additional terms relevant to the curre
problem; more details can be found in the above mentio
references@28–31# and our previous work@9#.

The basic quantity to be calculated within geometric m
sure theory is the relative Hausdorff volume of a surface
the normalized scalar densityf̃5f/f rms , as given by

H„G~BR
(2)!…

V~BR
(2)!

;Rdg
(2)

22<A11
1

pEBR
(2)

u“f̃u2d2x, ~35!

where V(BR
(2))5pR2 is the volume of a two-dimensiona

ball with radiusR. The scaling exponent of the first orde
4-7
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scalar structure function and fractal dimensions can be
lated by inequalities, which for the analysis are assume
be sharp@29#. Using the relationfDf5Df2/22u“fu2 and
the equation of motion~33!, the gradient under the integra
can be replaced by

u“f̃u252
1

2D
~u•“ !f̃22

1

D
f̃2~“•u!1

1

2
Df̃21

f ff̃

Df rms
.

~36!
n
s
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r-

e
,
te
u

t
te
v
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he
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~u•“ !f̃25“•~uf̃2!2f̃2~“•u! ~37!

the first term on the right hand side can be expressed
sum of two divergences. When substituted under the inte
in Eq. ~35! the Hausdorff volume becomes
H„G~BR
(2)!…

V~BR
(2)!

<A11
1

pEBR
(2)H 1

2D
@2“•~uf̃2!2f̃2~“•u!1DDf̃2#1

f ff̃

Df rms
J d2x. ~38!
-
for-
t

y-

d in

ing
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a-

r

The four integrals are denotedI 1 through I 4 and analyzed
separately. The analysis of the three integralsI 1 , I 3, and I 4
proceeds as in the previous applications to two-dimensio
scalar advection@9#. In particular, application of Gauss’
theorem and the Cauchy-Schwartz inequality connects
first integral to the longitudinal structure function of the su
face velocity fieldS2

L(R),

I 1<
AFf

D
RAS2

L~R!. ~39!

Ff is the flatness of the passive scalar,

Ff5^f4&/^f2&25^f̃4&. ~40!

If the correlations off decay rapidly this is essentially th
volume averagêf4&V/^f2&V

2 . For a Gaussian velocity field
Ff53. Experiments and numerical simulations indica
strong ramp and cliff structures in the scalar field and th
some deviation from the Gaussian distribution@32–35#, im-
plying a scale dependence ofFf . However, we here restric
ourselves to first and second order correlations where in
mittency corrections to the classical Kolmogorov-Obukho
Corrsin scaling are expected to be small and work with
constantFf .

Exploiting the statistical stationarity of the passive sca
dynamics the fourth term, which contains the driving of t
passive scalar, can be expressed as

I 45
1

pEBR
(2)

f ff̃

Df rms
d2x

5
R2

Df rms
2

1

pR2EBR
(2)

f ffd2x

5Pr
th

t f
R̃2, ~41!
al

e

s

r-
-
a

r

whereR̃5R/h is the radius of the disk in units of the Kol
mogorov length. Using Gauss’s theorem and Green’s
mula it can be shown@9# that the third term is subdominan
compared to the fourth,

I 3<2AI 4}R̃, ~42!

and hence can be omitted in the following.
Finally, we come to the termI 2, which contains the di-

vergence of the velocity field. Application of the Cauch
Schwartz inequality gives

I 252
1

2pDE
BR

(2)
f̃2~“•u!d2x

<
R2

2DAE
BR

(2)

f̃4

V~BR
(2)!

d2xAE
BR

(2)

~“•u!2

V~BR
(2)!

d2x

5
AFfR2

2D
^~“•u!2&1/2

5
AFf PrR̃2

2
^~“̃•u!2&1/2, ~43!

where the root mean square of the divergence is measure
units of the Kolmogorov timeth . The derivatives in the
divergence term can be estimated from above us
^(“•u)2&<^u“uu2& @see Eq.~25!#. In the following calcula-
tion this bound is not needed and the divergence fluctuat
in Eq. ~43! can be taken directly from the numerical simul
tions.

Combining Eqs.~38!, ~39!, and ~41! we arrive at an in-
equality for the fractal dimensiondg

(2) of the passive scala
graph and thus viadg

(1)5dg
(2)21 @29# at a fractal dimension

for the constant level setsf05f(x),

dg
(1)21<

d

d ln R̃
ln h~R̃!, ~44!

with
4-8
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h~R̃!5A11AFf PrR̃AS̃2
L1

AFf PrR̃2

2
^~“̃•u!2&1/21Pr

th

t f
R̃2. ~45!
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S̃2
L5S2

L/vh
2 is the longitudinal second order structure functi

in units of the Kolmogorov velocity. Obviously, if the las
two terms under the integral dominate, thenh(R̃)'R̃ and
dg

(1)52, implying a surface filling distribution of the scala

For sufficiently large scalesR̃ or large Prandtl numbers thi
is always the case. On the other hand, if the second term
the velocity structure function dominates, sayS̃2

L'R̃g, then

dg
(1)53/21g/4. Thus for the usual Kolmogorov scalingS̃2

L

;R̃2/3 anddg
(1)55/3.

The Prandtl number dependence of the fractal dimens
can be studied using as input the velocity correlation fu
tions from our numerical simulations. Both Pr and the pr
actorth /t f , a measure of the strength of the scalar drivin
are free parameters in Eq.~45!. The results for two different
values ofth /t f are shown in Fig. 10. For many values of
a fractal dimensiondg

(1),2 is observed. If the termth /t f

becomes large, either because of a smallt f ~strong driving!
or a largeth ~weak transport to smaller scales!, the fractal
dimension approaches that of a space filling fractal,d (1)'2.

FIG. 10. Fractal dimensiondg
(1) for passively advected scalar

for different values of the parametera5th /t f and the Prandtl
number Pr. The underlying turbulent velocity field is the surfa
flow for Rel599 as shown in Fig. 2 andFf53.
01631
ith

n
-
-
,

In the experiments of Sommerer@6# a fractal dimension
dg

(1) between 1.28 and 1.43~denotedD2) was found. We find
these values only in the transitional region, before the iner
range is developed. The observations are consistent with
~45! since it provides only an upper bound and the obser
values are indeed smaller. Further comparisons between
periment and theory, using, e.g., measured velocity corr
tion functions in Eq.~45!, would be more than welcome
Some experiments are in preparation@13#.

V. SUMMARY

The surface flows studied here are intermediate betw
two- and three-dimensional flows. They are confined to
surface, but their statistical properties are strongly infl
enced, even dominated, by the 3D volume turbulence.
flow field in the surface can exchange energy and vortic
with the bulk, so that neither energy nor enstrophy are c
served quantities in the Eulerian, undriven limit. Moreov
in addition to large scale forces that maintain the 3D flow
surface flow is driven by small scale perturbations that co
from transverse pressure variations and local gradient
normal velocity. As a result the scaling properties of the flo
are essentially those of 3D turbulence, with an energy c
cade in the inertial regime. The scaling exponents of
velocity structure function are slightly larger than those
bulk 3D turbulent flows, indicating larger intermittency e
fects. We also observed a 2/3 difference in the amplitude
the structure functions between surface and bulk in the in
tial regime. Several of the observed characteristics of
surface flow are in agreement with the measurements
Goldburget al. @13#.

We have also discussed the scaling properties of a sc
advected by the surface flow and have identified differ
scaling regimes. It seems that very often the dynamics
duced by the divergence of the flow field is the fastest p
cess, and that the advective properties of the flow are s
dominant. This might explain why random mappings cou
successfully be applied to the modeling of the particle dis
butions @3–6#, but a more detailed comparison betwe
theory and experiment is clearly needed.

An important characteristic quantity of the surface flow
is the compressibility factorC. The numerical simulations
and the experiment@13# using a vertically oscillating grid
both indicateC'1/2. With a stable stratification of the fluid
below the surface that reduces vertical fluctuations it mi
be possible to achieve smaller values ofC. This should open
up the possibility of studying the effects of compressibil
over a larger range ofC, in connection both with the inter
mittency contributions to the scaling exponents and with
scalar dynamics in surface flows.
4-9
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